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Abstract

Luminescence spectra of organometallic molecules in crystals or glasses are discussed and interpreted by using the time-dependent
Ž .theory of electronic spectroscopy. Emphasis is placed on determining bond length and bond angle changes excited-state distortions

between the ground and excited electronic states. The physical meaning of the dynamic processes and the molecular properties are
described and illustrated with both theoretical calculations and experimental spectra. The discussion begins with spectra involving only

Žone displaced normal mode, and continues with the effects of multiple normal modes. Both common features and unusual effects the
.‘Beat’ and the ‘MIME’ are described and interpreted. Finally, the effects of normal mode coupling and of electronic state coupling are

briefly described. q 1998 Elsevier Science S.A.
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1. Introduction

ŽLuminescence spectroscopy fluorescence if the tran-
sition is spin-allowed, phosphorescence if it is spin-for-

.bidden has long been recognized as an important
w xmethod for determining excited-state energies 1–6 .

Because luminescent molecules in condensed media
usually emit from the lowest excited state of a given

Ž w x.spin multiplicity Kasha’s rule 7 , and because this
state is also usually responsible for photochemical activ-

Ž .ity, luminescence spectra together with lifetime data
can yield fundamental understanding about both photo-
chemical and photophysical processes. Luminescence
spectra can provide much more information than just an
excited-state energy. For example, the width of the
spectrum directly provides information about the steep-
est slope of the potential surface and thus about the
femtosecond dynamics. Vibronic structure in the spec-
trum provides information about the bond length and
angle changes between the ground and excited states.
Intensities provide information about vibrational cou-
pling and electronic state coupling. These aspects of
excited states form the subject of this paper. Our goal is
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to present luminescence spectroscopy from a point of
view that emphasizes the physical picture of the dy-
namic process. This point of view is illustrated with
both simple models and with experimental examples.
Our intent is to ‘train the eye’ such that the chemist can
interpret emission spectra and extract from them the
structural and photophysical details that they reveal
about the molecule.

The recent development that makes possible a simple
interpretation of electronic spectroscopy is the time-de-

w xpendent theory 8–10 . The time-dependent theory pro-
vides a powerful quantitative calculational method and
an intuitive physical picture for interpreting how a
molecule reacts upon the absorption or emission of
light. The key aspect of the physical picture is the
motion of a wave packet on a potential surface. Before
we discuss electronic transitions, we will briefly review
the physical picture of molecular motions. Potential
energy surfaces such as those shown in Fig. 1 form the
bases of this description. The surface is a plot of the
energy of the molecule versus a normal coordinate of
vibration. A nonlinear molecule containing N atoms has
3N-6 vibrational normal coordinates; we will assume
that they are separable and nondegenerate, and that a
cross-section of the multidimensional surface can be
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Fig. 1. Cross-section of ground- and excited-state potential surfaces
along a specific normal coordinate. The figure illustrates the emission
experiment where the vertical transition places the wave packet on
the ground-state potential surface. This wave packet then propagates.
The ground- and excited-state potential surfaces are displaced by a
distortion D.

used to represent one specific vibrational mode. The
molecular motions can be represented by the motions of
a ball on the potential surface. If the ball is placed on

Žthe surface at a point away from the minimum for
.example, where the arrow points in Fig. 1 , it will have

nonzero potential energy and will begin to roll down the
slope, lose potential energy and gain kinetic energy. The
motion along the normal coordinate represents a change
in the bond distances and angles in the molecule. The

Žball will roll past the minimum of the surface which
represents the bond lengths and angles of the molecule
when it is at equilibrium in the electronic state corre-

.sponding to the surface and then roll up the other side
where it momentarily will come to rest. This position
represents the opposite extreme of bond length and
angles from that of the initial position. Then it will roll
back down, retracing its path until it comes to rest at its
initial position. The amount of time that it takes to make
one round trip corresponds to one vibrational period.

ŽIn electronic spectroscopy, the emission or absorp-
.tion of a photon causes a transition from one electronic
Ž .state one potential surface to another. The transition is

Žvertical it takes place with no change in the bond
.lengths or angles and thus occurs from the position of

the minimum of the initial surface to the position verti-
Ž .cally below or above it on the final surface. According

to the time-dependent picture of spectroscopy, the pho-
Žton creates a wave packet the initial vibrational wave-

.function multiplied by the transition dipole moment
that is placed on the final surface. Once there it propa-
gates, or moves according to the time-dependent

ŽSchrodinger equation similar to the motion of the ball¨
.in the above example . In the emission experiment, the

Žinitial wave packet starts on the upper excited elec-

.tronic state surface and makes a vertical transition to
the ground electronic state surface, propagating on the
latter one. This propagating wave packet is called the

Ž .time-dependent wave packet or f t . In electronic emis-
sion or absorption spectroscopy, the quantity of interest
is the time-dependent overlap of the initial wave packet

² < Ž .:with the time-dependent wave packet, f f t . The
Fourier transform of this overlap in the time domain
gives us the spectrum in the frequency domain. In this
paper, we will concentrate on emission spectra because
only two potential surfaces, the ground state surface and
the surface for the lowest excited state of a given spin

Ž .multiplicity Kasha’s Rule are needed. Absorption
spectroscopy is treated in a very similar manner, and for
uncoupled electronic states, the same two surfaces are
used. The major difference is that the initial state is the

Žground state and the final state on which the wave
.packet propagates is the excited state. However, there

are many excited states frequently near each other, and
multiple potential surfaces may have to be used.

2. Summary of time-dependent theory

The mathematical details of the theory have been
w x Ždiscussed previously 8–12 for an introductory

w x.overview, see Ref. 13 , and only a brief discussion of
the general aspects will be given here. The emission
spectrum is governed by the motion of the initial wave

Ž .packet, fsf ts0 on the multidimensional ground
electronic state potential surface. This surface is, in
general, displaced relative to the excited-state surface
along normal vibrational coordinates, and has a differ-
ent functional form from that of the excited-state sur-
face. The wave packet is, in general, not an eigenfunc-
tion of the ground state surface and develops in time
according to the time-dependent Schrodinger equation.¨

w xThe emission spectrum is given by 8–10 :

q`
3 ² < :I v sCv exp iv t f f tŽ . Ž . Ž .H ½

y`

=
iE002 2exp yG t q t d t 1Ž .5ž /"

Ž .where I v is the intensity in photons per unit volume
per unit time at frequency of emitted radiation v, C is a

² < Ž .:constant, and f f t is the overlap of the initial
Ž .wave packet, fsf ts0 with the time-dependent

Ž .wave packet f t . G is a phenomenological damping
factor and E is the energy of the origin of the00
electronic transition. The physical meaning and spectro-
scopic consequences of these parameters are discussed
in Section 3.

The time dependence of the wave packet evolving on
a potential surface can be numerically determined by
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w xusing the split operator technique of Feit et al. 11 . The
time-dependent Schrodinger equation is¨

Ef 1
2i sy = fqV Q f 2Ž . Ž .

E t 2 M
2 2 2 2 2 Ž .where = sE rE x qE rE y and V Q is the poten-

tial energy surface. The wavefunction at a time tqD t
w xis 11 :

iD t
2f tqD t sexp = exp yiD tVŽ . Ž .ž /ž /4M

=
iD t 32exp = f Q,ts0 qO D t 3Ž . Ž . Ž .ž /ž /4M

The dominant error term is third order in D t. The initial
Ž .wavefunction f Q,t at ts0 is normally the lowest

energy eigenfunction of the initial state of the spectro-
scopic transition. The value of the wavefunction at
incremental time intervals D t is calculated by using Eq.
Ž . Ž .3 for each point on the Q grid. The autocorrelation
function is then calculated at each time interval and the

² < Ž .:resulting f f t is Fourier transformed according to
Ž .Eq. 1 to give the emission spectrum.

The two most important choices that must be made
in the numerical calculations are the size of the time
steps and the size of the computational grid. The smaller
the increment in the time steps and the smaller the
spacing between the grid points, the greater the accu-
racy in the calculation. General criteria for initial choices

w xhave been published 12,13 .
For many emission spectra of organometallic

molecules, several simplifying approximations can be
made without severe loss of accuracy. If it is assumed

Ž .that a the force constants are the same in both ground
Ž .and excited states, b the potential surfaces are har-

Ž .monic, c the transition dipole moment, m, is constant,
Ž .and, d the normal coordinates are not mixed in the

² < Ž .:excited state, then the overlap, f f t in emission or
absorption has a simple form. None of these assump-
tions are requirements of the time-dependent theory.
When the vibrational frequencies in the excited state are

Ž .not known as is usually the case , the assumption of no
change in force constant between surfaces can be used,

w xbut it does not introduce an error exceeding 10% 14 .
The harmonic approximation can often be used because
the spectroscopic action usually takes place deep in the
potential wells where anharmonic effects are small.
Under the assumptions described above, the overlap for

Ž .one specific normal mode k th has the simple form

D2 iv tk k² < :f f t sexp y 1yexp yiv t yŽ . Ž Ž .k k k½ 52 2
4Ž .

where v and D are, respectively, the vibrationalk k

frequency in cmy1 and the displacement of the k th

normal mode. The magnitude of damped overlap,
<² < Ž .: Ž 2 2 . <f f t exp yG t is plotted in all of our figures of
² < Ž .:f f t in the following discussion. The overlap is a
maximum at ts t and decreases as the wave packet0
moves away from its initial position. It reaches a mini-
mum when the wave packet is far away from the Franck
Condon region. But when it comes back to where it
started, the overlap increases once again, giving a recur-
rence of the overlap, which will not have the same
relative intensity as when it started because of the
damping factor, G . This recurrence in the time domain
corresponds to one vibrational period of the mode, and
in a structured emission spectrum, the recurrence is
related to the separation between the vibronic peaks that
form the progression in that vibrational mode. In most
transition metal and organometallic compounds, many
modes are displaced. In the case of many displaced
normal modes, the total overlap is the product of the
overlaps of the k individual modes

² < : ² < :f f t s f f t 5Ž . Ž . Ž .Ł k k
k

The electronic emission spectrum in the frequency do-
main is the Fourier transform of the overlap in the time

Ž Ž ..domain Eq. 1 .
No commercial software to carry out these calcula-

tions is available at the time of writing. The simplest
way to get started would be to calculate overlap as a

Ž .function of time following Eq. 4 , and then to Fourier
transform the autocorrelation function as shown in Fig.
1. Fast Fourier transform algorithms are commonly
available. To carry out the more accurate calculations

Ž .involving propagation of the wave packet, Eq. 3 must
w xbe implemented as discussed in Ref. 11 . In both cases,

Žthe required inputs are the potential surfaces that fre-
quently can be approximated as harmonic oscillator
surfaces defined by the observed vibrational frequencies

.from the infrared or Raman spectra , the E determined00
from the electronic spectrum and G determined by the
vibronic band width. The variables to be fit are the D’s,
the displacements of the excited surface relative to the
ground state surface along the normal coordinates. For
uncoupled vibrations and one electronic excited state, a
typical calculation requires tens of seconds on a PC.

3. Interpretation of emission spectra

In this section, we will illustrate how to interpret
spectra using the time-dependent theory. Our emphasis
will be on the physical meaning and on how the differ-
ent properties of the potential surfaces are manifested in
experimental spectra. To do this, we will use calculated
spectra in which only one specific parameter is changed
at a time. These spectra will serve as pedagogical
examples of what an ‘ideal’ spectrum would look like.
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An understanding of the dynamic processes that take
place will result in the ‘trained eye’ that is necessary to
both interpret real spectra and to assign the distortions
the molecule undergoes when excited. Relevant experi-
mental examples taken from our own work are refer-
enced, and in some instances discussed in each section.

3.1. Emission spectra with one displaced mode

ŽThe main features of any spectrum in the frequency
.domain are determined by features present in the over-

Ž .lap in the time domain of the initial wave packet with
the propagating one. To see how the dynamics of this
overlap of two wave packets shape our spectra, we will
start with simple examples.

The shape of the electronic potential surface is fre-
quently parabolic. The first feature that we will examine
for spectroscopic consequences is the steepness of its
walls. In the specific dimension being examined, the
higher the vibrational frequency, the steeper the walls.
The steepness becomes greater as we go up its walls,
and is less if we move down. The slope of this ‘wall of
the well’ will determine how long the initial wave
packet will overlap with the propagating one. If the
wave packet is born on a very steep part of the well, it
will move away from its initial position faster than it
would if it were on a shallow slope, and the result is a

² < Ž .: Žsharp drop of the overlap in the plot of f f t Fig.
.2 . The closer the wave packet is to the bottom of the

surface, the less steep the slope and the longer the time

Fig. 2. Plot of the magnitude of the overlap versus time for a frequency of 400 cmy1 and for three different values of the distortion, D. The
different values of the distortions are: top panel Ds1, middle panel Ds2 and bottom panel Ds3. In all of the plots, dotted lines have a G of
100 cmy1 and solid lines have a G of 40 cmy1. The magnitude of the recurrences would return to 1.00, but the damping factor, G , explained in
text, causes the recurrences to eventually disappear.
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necessary for the propagating wave to move away from
its initial position and therefore diminish the overlap.
The initial slope, and thus the time it takes for the
overlap to decrease, will determine the broadness of our
spectrum. A steep slope causes a rapid decrease in the
overlap resulting in a small value of the time required

Žfor the overlap to decrease to half its initial value T ina
.Fig. 2 . An event that requires a short time to occur in

the time domain results, after Fourier Transform, in a
Ž .high frequency or energy in the frequency domain.

The breadth of the spectrum in the frequency domain is
given by 2prT . The more aligned the minima of thea

Ž .two potential surfaces ground and excited are to each
other, the smaller the slope of the surface on which the
wave packet finds itself after the electronic transition,

Žand the sharper the emission spectrum because the

wave packet moves away from its initial position slowly
.resulting in a large value of T in the time domain . Asa

seen in Fig. 1, this ‘alignment’ of potential surfaces, or
relative position of one from the other, is defined as the
distortion D. A big value of D represents a big distor-
tion in the excited state, and vice versa. In an experi-
mental spectrum, the breadth allows us to calculate the

Žsize of D. A big D causes the initial wave packet after
.the vertical transition to end up on a steep slope. The

steeper the slope, the sharper the drop, the broader the
spectrum.

In Fig. 2, we have also indicated a second important
time that we call T . It is the time it takes for theb
propagating wave packet to get back to where it started
from, leading to a recurrence of overlap. The physical
meaning of the recurrence in the overlap is the vibra-

Fig. 3. Emission spectra calculated using the potential surfaces that give rise to overlaps in Fig. 2. The frequencies and distortions are the same as
those in Fig. 2. In all of the spectra, dotted lines have a G of 100 cmy1 and solid lines have a G of 40 cmy1. The emission spectra in each panel
are normalized to equal area.
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tional period of the vibrational normal mode, i.e., the
time it takes for the oscillator to undergo one complete
motion from its initial position, through the extreme of
elongation or contraction, back to its initial position. For
a harmonic oscillator, this time will remain the same
each successive recurrence. It is translated into our
spectrum, which is in the frequency domain, as the
spacing between the different ‘bumps’ that constitute a
progression. When we have only one dimension, and
therefore only one frequency to determine the shape of
our emission spectra, then we will only have one pro-
gression in that frequency. The spacing in wavenumbers

Ž .between the distinct bumps see Fig. 3 is constant and
is given by 2prT .b

The third important time that is included in our plot
² < Ž .:of f f t is a mathematical function known as a

‘damping factor’ or G that is imposed on the overlap to
damp its recurrences to represent the physical processes
that cause the wave packet to leave the potential sur-
face. These processes include transfer of amplitude to
other electronic surfaces, the ‘bath’ or surrounding
medium, etc. The damping factor is also frequently used
to include all of the broadening mechanisms that can
affect a spectrum including ‘inhomogeneous broaden-
ing’ caused by multiple emitting sites of slightly differ-
ent energies in a liquid or solid. There are other more

w xaccurate ways to include inhomogeneous effects 15,16 ,
but for simplicity we will lump everything into a ‘phe-
nomenological damping factor’ G . The damping factor
smears out individual peaks in the frequency domain,
and sometimes is so big that we are unable to identify
individual peaks at all. In Fig. 3, we illustrate how the
different values of G change the appearance of the
emission spectrum. With a small value, Gs40 cmy1,
the vibronic peaks are resolved to the baseline. When
we use a bigger value, Gs100, there is less resolution
of each vibronic peak, and they do not go down to the
baseline.

Frequently, we cannot know from an emission spec-
trum alone the specific vibrations that our molecule
possesses because the spectra are usually broadened.
However, we can take advantage of another spectro-
scopic tool, resonance Raman, to determine which
modes have displaced potential surfaces. The explana-
tion of these processes deviates from the intent of this
paper, and therefore will not be discussed, but the

w xreader is referred to Refs. 5,15,17–20 to achieve a
better understanding of their theoretical treatment and
experimental applications.

3.2. Emission spectra with multiple Õibrational modes

A molecule containing N atoms has 3N-6 normal
modes of vibration. Fortunately, not all of these modes
will have displaced potential surfaces, and not all of the
D’s for those modes that are distorted will be large.

However, the emission spectra of organometallic
molecules usually encountered in the literature contain
significant contributions from more than one normal
mode. In this section, we expand on the above discus-
sion by including additional vibrational modes. We
begin by discussing the basic effects and illustrate our
discussion with a two-mode example. We then show
how the contributions of two or more modes can lead to
spectra that could easily be misinterpreted. Finally, we
show that inclusion of modes with small distortions
does not change the picture very much, and that in fact
their inclusion is in some respects similar to increasing
the damping.

We begin with emission spectra from a two-mode
example shown in Fig. 4. These spectra depict two
different progressions, one with a vibrational frequency
of 2000 cmy1 and the other of 300 cmy1. Such fre-
quencies are typical of a carbonyl stretch and a metal–
ligand stretch. In the top panel of this figure we observe
both progressions with relatively small distortions, Ds
1. This means that the minima of the potential surfaces

Žare not that far away from each other, in the horizontal
.axis , thus giving a slow decrease in overlap and a large

value of T . Our choice of G lets us see a resolvedb
spectrum with two clear progressions, one in each of the
modes. The vibronic bands that create the first progres-
sion will have a constant separation of 300 cmy1. The
relative intensities of these bands, in this case where
there is a small distortion, will decrease as we increase
the quantum number, because the total width of the
spectrum is small. We can see the progression in the
2000 cmy1 band, and in each quantum of the 2000
cmy1 mode there is a progression of the 300 cmy1 one.
The intensities of the second progression of the 300
cmy1 mode are smaller because we are at a higher
quantum level in the 2000 cmy1 mode. For each quan-
tum in the biggest frequency, we can see all the quanta
of the smallest frequency because, in this case, both
frequencies are so far apart that we can see the progres-
sions individually. Both progressions behave the same
because they have the same distortion. When one of
them has a noticeably different distortion than the other,
then the relative intensities of the peaks change, as well

Žas the number of peaks present for each progression as
we saw in Fig. 3 when we increased the D for a

.spectrum that consisted of only one mode . This can
readily be observed in the next frame, where the biggest
frequency, 2000 cmy1, has a big distortion, D, relative
to that of the lower frequency. The intensities of the
peaks that form the progression change, resulting in the
most intense peaks being farther from the first quanta of
vibration. How far from it they are depends on the
magnitude of D. As the distortion increases, the largest
intensity will be found in higher vibrational levels be-
cause the total width of the spectrum is larger. In the
third frame, the 2000 cmy1 mode has a small distortion
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compared to that of the 300 cmy1 mode. Therefore, the
relative intensities between the series of bumps that
compose our progression in the biggest frequency re-
mains the same as the first frame, namely: biggest,
smaller, smallest. But now, the 300 cmy1 mode with a
big distortion will have a different array of relative
intensities among the peaks that constitute its progres-

Žsion, and in addition it has more vibronic bands simi-
.larly to what happened in Fig. 3 because the total width

is larger. Note that the relative intensities of the low
Žfrequency mode are always replicas of each other scaled

by the intensities of the peaks in the high-frequency
.mode. This pattern is a signature of uncoupled normal

coordinates. If the patterns change in the spectra, then
coupling occurs, and a more detailed treatment is re-
quired. We will return to this point in Section 3.5.

To illustrate the applications of the above ideas to the
interpretation of an experimental spectrum, consider the
low-temperature emission spectrum of Ph PAuCl. In3
the course of our studies of the luminescence of gold-

w xcontaining molecules 20,21 , we measured the emission
of Ph PAuCl. This emission has been previously re-3

w xported 22 , but the distortions have not yet been ana-
lyzed. Fig. 5 shows our experimental spectrum from an

Ž .inorganic matrix at about 15 K continuous line , and
our fit calculated by using the time-dependent theory
Ž .dotted line .

To achieve a fit of an experimental spectrum, the
first step is to find E , that is, the emission from the00
lowest vibrational level in the excited state potential
surface to the lowest vibrational level in the ground-state
potential surface. This band is the beginning of every

Fig. 4. Emission spectra with two displaced normal modes of frequencies 2000 cmy1 and 300 cmy1. In the top panel both have the same
distortion, Ds1. In the middle panel, the frequency of the 2000 cmy1 mode has Ds2.5 while the low frequency has Ds1. In the bottom
panel the high frequency has Ds1 but the low frequency has Ds2. All of the emission spectra were calculated with a G of 40 cmy1.
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progression, and its shape and size, in relation with all
the other vibronic bands present, can give us some hints

Žas to what our choice of G should be individual width
.of this peak and if the vibrational frequencies involved

Žwill have big distortions or not compare its size to
those of the other vibronic bands present in the spec-

.trum . Once E is determined, we can measure the00
spacing between this peak and the others, and thus
determine the vibrational frequencies of the displaced
modes. In the case of Fig. 5 we can see that the first
peak 300 cmy1 to lower energy is much smaller than
E , which tells us that it will have a small distortion00
Žfor reasons similar to those underlying the progression

y1 .in the 400 cm mode in Fig. 3 . This conclusion is
verified by the even weaker intensity of the peak that
represents the second quanta of the 300 vibration.

The next vibronic band to lower energy is bigger.
Therefore, it is not part of the same progression, be-
cause, for the intensities to increase as we go to bigger
quantum numbers, E must be the smallest of the00
peaks in the progression. In addition, the energy separa-

Ž y1 .tion that corresponds to this peak around 1090 cm
is not three quanta of the first frequency. Continuing
with this analysis, we can go through every vibronic
band and assign its place in a particular progression.
There is an independent check on the vibrational fre-

w xquencies; a Raman spectrum of this molecule 22 has
been obtained and similar frequencies are observed.

After the frequencies are determined and a semi-
quantitative assessment of the distortions is made, the
experimental spectrum is fit by making an initial guess
at the D’s, calculating the spectrum, comparing it with
the experimental one, and varying the D’s until the best

fit between the spectra is obtained. The excellent quality
of the fit shows that the spectrum is dominated by four
normal modes. The calculated D’s are given in the
caption to Fig. 5.

3.3. The ‘Beat’ and the ‘MIME’

When two or more distorted normal modes con-
tribute to an emission spectrum, the complexity of the
spectrum increases compared to a spectrum dominated
by one mode. With large distortions andror similar
frequencies of the modes, progressions overlap. The
analysis of the spectrum of Ph PAuCl discussed above3
shows how a spectrum can be systematically inter-
preted. Sometimes, however, the spectrum can look
deceptively simple when in fact it is quite complex.
Two such deceptive cases that we have discovered and

w x w xnamed, the ‘Beat’ 23 and the ‘MIME’ 24–26 , are
discussed and analyzed in this section.

As the starting point for analysis of the deceptive
examples, we will return to a two-mode example, this
time with frequencies of 400 cmy1 and 600 cmy1 and
both with Ds1. The emission spectrum, shown in Fig.
6, is similar to that in Fig. 4 except that the progressions
are overlapped because the frequencies are not as far
apart from each other as in Fig. 4. In this spectrum, we
cannot clearly distinguish between the two progressions
because they are so close in frequency. When this
happens, we may encounter several spectroscopic ef-
fects that may trick our eye and lead us in wrong
directions when trying to assign the frequencies that
compose our spectrum. Two of these features are shown
in the second and third frames of Fig. 6. All three of the

Fig. 5. Emission spectra of Ph PAuCl in an inorganic matrix taken at 15 K. The dotted line is the calculated fit to the spectrum using four modes3
Ž . y1 y1 y1 y1Gs110 : 1083 cm with Ds1.38, 1580 cm with Ds1.16, 600 cm with Ds0.7 and 300 cm with Ds0.7.
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Ž y1 .Fig. 6. Emission spectra calculated for 2 modes with similar frequencies 400 and 600 cm . These spectra show how the interplay between
Ž .distortions and damping drastically changes the appearance of the spectra. Top panel: both frequencies have a Ds1 and a small G Gs25 .

Ž .Middle panel: the MIME, same frequencies as top panels but G is bigger Gs75 . Lower panel: the Beat, same frequencies as above panels, but
larger distortions Ds3 in both normal modes with Gs25.

spectra contain only two modes with frequencies of 400
and 600 cmy1.

In the second frame, we can see how increasing G

broadens the individual peaks, smearing them into wide
Ž .peaks which might happen experimentally , and giving

an impression that there is just one progression with a
frequency of 500 cmy1. This is what is called the
Missing Mode Effect or ‘MIME’ because the spectrum

w xmimics one progression 24–26 . The origin can be
easily understood from the overlap in the time domain
Ž .Figs. 7 and 8 . The top of Fig. 7 shows the overlap
with a small G , which, after Fourier transformation,
gives the spectrum in the top panel of Fig. 6. When G

is bigger, it diminishes the overlap before we can get
enough recurrences. Only the recurrence at T s11 fsb

dominates, and therefore the Fourier Transform gives us
a progression with a frequency 2prT s500 cmy1 thatb
is a compromise between the frequencies involved. The
reason that the compromise frequency is observed can
be seen from the top two panels of Fig. 8. The total
overlap is the product of the top two panels; the maxi-
mum of the product overlap is between the maxima at
about 16 fs for the low frequency peak and that at 10 fs
for the high-frequency peak. When a large G ‘kills’ the
overlaps at longer times, only the compromise overlap
remains. Note that the compromise overlap will be
between the maxima of the constituent overlaps, but is

w xnot a simple arithmetic average of the two 26 . This
effect was first discovered in the emission spectrum of

Ž .the organometallic molecule W CO pyridine.5
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Fig. 7. Plot of the magnitude of the overlap versus time for the two mode spectra shown in Fig. 6. The frequencies of vibrations and the values of
Ž .the distortions D’s and G ’s are the same as in Fig. 6.

The third frame of Fig. 6 shows what appears to be a
spectrum caused by a large distortion in a single 200
cmy1 mode. However, this effect, called the Beat, is
actually also composed of two frequencies of 400 and
600 cmy1, but this time with large distortions. Because
both distortions are big, both progressions will have a
maximum intensity near the middle of their respective
progressions, but the individual peaks that constitute
these progressions will only be 200 wavenumbers apart
from each other in the spectrum. Note that the distance

Ž .between the lowest quanta E and the first one is 40000
cmy1, because that is the smallest frequency of the two.
From then on we will have the first quanta of the 600

y1 y1 Žcm mode, and then the second of 400 cm 800
y1 .cm apart from E , then the first quanta of one with00

the second of the other, and so on, appearing to the eye

as a progression in the 200 cmy1 mode with a big
distortion. The key to discovering this type of progres-
sion is finding E , then assessing the spacing between00
it and the first vibronic band. This will be the lowest
frequency. Any other progression that seems to be
occurring at a frequency lower than that is just a result
of two or more frequencies present in our spectrum.

Ž .In the time domain Fig. 8 , we can clearly see the
cause of the apparent 200 cmy1 progression. The prod-

y1 Ž . y1uct of the overlaps of the 400 cm top and 600 cm
Ž .middle modes is very large at about T s32 fs whereb
they coincide, but is very small at shorter times because
the peak of one occurs at a valley of the other. The
Fourier transform of the bottom panel will give a spec-
trum that has a vibronic spacing of 2prT s200 cmy1.b
This explanation is akin to a beat frequency in classical
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Fig. 8. Plot of overlap versus time illustrating the Beat for frequencies of 400 and 600 cmy1. The top panel shows the overlap of only the 400
cmy1 mode. The middle panel shows it for the 600 cmy1 mode. The bottom panel is the product of these two overlaps. Note that the only major
recurrence occurs at about 32 fs. When the product overlap is Fourier transformed, the emission spectrum appears to have a vibronic progression
in a 200 cmy1 vibration.

physics where two waves of different frequencies com-
bine to give a beat frequency that is the difference
between the two original frequencies.

We conclude this section with experimental exam-
ples of the MIME and the beat in the emission spectra
of metal compounds. The spectra of trans-

Ž . Ž . Ž Ž .W N dppe dppe s 1,2 bis diphenylphosphino2 2 2
. w xethane provide an excellent example of the MIME 27 .

The emission spectrum taken at 80 K is shown in the
middle panel of Fig. 9. It appears to contain a single
progression with a spacing of 500 cmy1. Lowering the

Žtemperature to 10 K resolves new features Fig. 9, top
.panel . In the low-temperature spectrum, these vibronic

Ž y1.peaks correspond to metal–nitrogen 524 cm
Ž y1 .metal–phosphine 176 cm and a variety of phenyl

Ž y1 .ring modes 1000–1500 cm . The calculated low-

temperature spectrum is given by the solid line in the
middle panel. It was calculated with a G of 17.5 cmy1.
The emission spectrum of the 80 K sample is calculated
using exactly the same parameters of frequencies and

y1 Ždistortions, but with a G of 80 cm Fig. 9, middle
.panel. The larger g kills longer time recurrences in the

time domain, leaving just one recurrence at a ‘com-
promise’ time that, when Fourier transformed, corre-
sponds to the 500 cmy1 MIME frequency observed in
the frequency domain spectrum. In this example, more
than the two modes that contribute the spectra in Fig. 6
are involved, but the explanation of the effect is the
same.

ŽŽ . . w Ž . xThe emission spectrum of C H N Pd MNT2 5 2 2
Ž Ž . .xyMNTsS C CN provides a good example of the2 2 2

w x ŽBeat 28 . The spectrum, shown in Fig. 9 bottom
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Ž .Fig. 9. Top and middle: the emission spectra dotted lines of
Ž . Ž . Ž Ž . .trans-W N dppe dppe s 1,2 bis diphenylphosphino ethane .2 2 2

The spectrum taken at 80 K, shown in the middle panel, appears to
contain a single progression with a spacing of 500 cmy1. Lowering

Ž .the temperature to 10 K resolves new features top panel . The
Ž y1 .calculated low temperature spectrum G s17.5 cm is given by

the solid line in the middle panel. The emission spectrum of the 80 K
sample is calculated using exactly the same parameters of frequen-

y1 Ž .cies and distortions but with a G of 80 cm middle panel.
ŽŽ . . w Ž . x ŽBottom: the emission spectrum of C H N Pd MNT mnts2 5 2 2

Ž . .2y y1S C CN . The regular 26 cm spacing between the vibronic2 2 2
features is the beat frequency between the two most highly distorted

Ž y1 y1.modes in the molecule 162 cm and 188 cm .

. y1panel , contains a regular 26 cm spacing between the
vibronic features. The 26 cmy1 frequency is the beat
frequency between the two most highly distorted modes

Ž y1 y1.in the molecule 162 cm and 188 cm . In this
example, the emission band containing the beat overlaps

Ž .another unstructured band to lower energy and only
the high energy side of the spectrum is shown. The
calculated example in Fig. 6 shows the entire band. In
both cases, the product overlap contains a big recur-
rence at long times which, when Fourier transformed,
gives rise to the low-frequency beat frequency in the
spectrum.

3.4. Effect of multiple modes with small distortions

Sections 3.2 and 3.3 examined the effects of more
than one mode with specific examples of two distorted
modes. The addition of more modes results in more
complexity in the emission spectra, but the patterns that
develop follow the principles that we have described for
the new patterns resulting from adding a second mode
to the one-mode case. Spectra are calculated and fit to
experiment by including the appropriate overlaps in the

Ž Ž ..product overlap Eq. 5 .
A common occurrence in many molecules is that a

small number of modes have large distortions and the
remainder have very small distortions. In such cases, the
spectrum is dominated by the highly distorted modes
and the remainder merely act like a damping factor. In
this section we briefly analyze and explain this result.

The most important effect of increasing the number
of modes with small distortions is the broadening of the
spectrum. This effect is illustrated in Fig. 10, where the
top panel shows a spectrum with just one mode with a
large Ds3, and the bottom panel shows the spectrum
with additional modes with frequencies of 100, 200 and
2000 cmy1 and D’s of 1. In both spectra, the value of

Ž y1 .G , the damping factor, is the same 80 cm . The
bottom spectrum appears to be less well resolved than
the top spectrum. The time domain explanation of the
apparent loss of resolution is contained in the overlap.
Inclusion of modes of different frequencies means that
the recurrences of these modes will happen at different
times. Specifically, the recurrence of the highly dis-
torted mode will happen when the overlaps for the other
modes are small, and thus in the product overlap, the
total recurrence at that time will be smaller. This de-
crease is similar to the decrease caused by increasing
the damping. The relative intensities of the vibronic
bands is not strongly affected; thus fitting the bottom
spectrum with just one mode and a larger damping
factor would yield a calculated distortion not very dif-
ferent from that calculated with all of the modes. The

Žapproximate calculation not all of the modes, larger
.damping is frequently not a bad approximation, and

distortions determined in this manner will frequently not
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Fig. 10. Emission spectra illustrating how adding modes with small distortions acts like the damping factor. Top panel shows the calculated
spectra containing one 400 cmy1 mode and Ds3. The lower panel has the same mode as the top one, and additional modes with frequencies of
100, 200 and 2000 cmy1 all of which have Ds1. Both spectra are calculated with a damping factor Gs80 cmy1.

be far wrong. However, it will always be more accurate
to include all of the displaced modes using information
from resonance Raman spectra.

The overall width of the emission spectrum is domi-
nated by the steepest slope of the multidimensional
potential surface. For a specific normal mode, the greater
the distortion, the larger the slope, and for a given
distortion, the greater the vibrational frequency the larger
the slope. Thus, if one particular mode is very highly
distorted and the remainder of the modes have very
small distortions, the initial decrease in the overlap will
be dominated by the slope of the highly distorted mode,
and the other modes will only have a small effect. Thus,
the width of the spectrum and the calculated distortion
for the highly distorted mode will not be drastically
changed by the inclusion of other modes with small
distortions. This result is also illustrated in Fig. 10. Note
that the width at half height is about the same. The
inclusion of the high-frequency mode does cause a
noticeable tailing to lower energy; although its distor-
tion is small, the slope is appreciable because of the
high frequency.

3.5. Coupled Õibrational normal modes

In this section, we return to the case of two displaced
modes with very different vibrational frequencies such

that the progressions are separated from each other as
shown in Fig. 4. The emission spectrum of hexafluo-

Ž .roacetylacetonatodimethylgold III , Me Auhfac, shown2
in Fig. 11, at first glance appears to fit the description of
a spectrum dominated by a low frequency and a high-

w xfrequency mode 29 . There are clusters of bands whose
individual peaks are separated by 262 cmy1. These
clusters are separated from each other by 1352 cmy1.
However, the clusters in Fig. 11 are not replicas of each
other like they are in Fig. 4. Instead, the intensity
distribution of peaks in each cluster changes; each
cluster to higher energy of the previous one has an
intensity distribution in which the lower energy peaks of
the cluster gain intensity relative to the higher energy
peaks. The ‘non-replica’ pattern cannot be accounted
for by uncoupled potential surfaces, and requires a

Ž .surface where the two modes both totally symmetric
are coupled.

Ž .The uncoupled potential ‘best fit’ to the n, 0
progression between 21 000 and 23 000 cmy1 is ob-
tained by using D s1.57, D s1.5, and frequencies ofx y

y1 y1 Ž .1352 cm and 262 cm , respectively Fig. 11, top .
Ž .Although a good fit to the n, 0 progression is ob-

Ž . Ž .tained, the fits of the n, 1 , n, 2 etc. progressions are
poor. The reason for the poor match is the increase of
the width of the low frequency progression with increas-

Žing quantum number of the high frequency mode, i.e.,
.the progressions are not replicas of each other .
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Ž . Ž .Fig. 11. The 15 K emission spectrum of hexafluoroacetylacetonatodimethylgold III solid lines . The top panel show the ‘best fit’ with uncoupled
Ž . Ž y1 y1normal modes dotted lines. The bottom panel shows the best fit with quadratically coupled normal modes Gs74 cm , 258 cm with

y1 y1.D s1.44, 1354 cm with D s1.52 and a coupling between the modes of k s116.5 cm .x y x y

The best fit between the experimental and calculated
spectra is shown in the bottom of Fig. 11. The values of
the parameters for the transition to ground state poten-
tial are: E s22 910 cmy1, Gs74 cmy1 D s1.44,00 x

D s1.52 with frequencies of 258 cmy1 and 1354y

cmy1 respectively, and a coupling between the modes
of k s116.5 cmy1.x y

The ‘non-replica’ pattern of bands is a spectroscopic
signature of normal mode coupling. When coupling
occurs, the wave packets do not move independently on
cross-sections of the multidimensional potential surface.
Instead, the motion in one of the dimensions is influ-
enced by the position of the wave packet in a different
dimension. When evidence for such coupling is encoun-
tered in an experimental spectrum, more detail about the
excited-state structure can be extracted than from an
uncoupled spectrum. However, unless the coupling is
very large, a good first approximation of the excited-

state distortions can be obtained by obtaining the best fit
Žto the spectrum using uncoupled surfaces in the above
.example, the largest error is less than 10% .

4. Coupled electronic states

Up to now, we have described and calculated emis-
sion spectra of organometallic compounds in a two

Želectronic state picture the ground state and one excited
.state . This model is frequently a good approximation.

However, it is just an approximation because in most
molecules there are many excited states lying relatively

Žclose in energy such that the absorption bands overlap,
.for example . In these cases, coupling between the

Ž .states spin–orbit coupling, for example may be signif-
icant and may be different at different internuclear
geometries. Coupling between electronic states can eas-
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ily be included in the time-dependent theory. We have
developed the theoretical description for several impor-
tant types of coupling and explored their spectroscopic

w xramifications 30–37 . Three effects, briefly discussed
in this section, are particularly important in
organometallic photochemistry and photophysics: inten-
sity borrowing, intersystem crossing and electron trans-

Žfer. A fourth, interference dips related to ‘Fano antires-
.onance’ is more of an oddity but may cause confusion.

All four are very closely related; we briefly describe
each of them and provide references to the original
literature for more detailed derivations and discussion.

4.1. Intensity borrowing

The electronic spectra of organometallics form a rich
area for investigating the effects of potential surface
coupling because one of the important sources of state
coupling, spin–orbit coupling, is large and because
frequently many excited electronic states with different
displacements and force constants lie relatively close
together in energy. One of the most important spectro-
scopic consequences of spin–orbit coupling is ‘intensity
borrowing’ in which a formally spin-forbidden transi-
tion ‘borrows’ or ‘steals’ intensity from a spin-allowed
transition. The appearance of spin-forbidden transitions

w xis frequently explained in this way 38,39 . Another
important consequence of spin–orbit coupling is unex-
pected vibronic structure. Progressions in a vibrational
normal mode may be induced in forbidden transitions,
or the relative intensities of the members of a progres-
sion may take on unusual patterns. These effects may
reveal themselves in the band envelopes in unresolved
spectra, or most interestingly, in the vibronic bands
themselves in resolved spectra.

In the time-domain picture, amplitude transfer be-
tween surfaces due to coupling can cause a spin-forbi-
dden transition to gain intensity in the electronic spec-

w xtrum 31,32,35 . A forbidden transition means that the
Žinitial wave packet is multiplied by zero the transition

.dipole moment and thus does not have any amplitude
on the potential surface called ‘surface 1’ with spin
multiplicity different from that of the ground state.
However, for the spin-allowed transition, the wave
packet is multiplied by the nonzero transition dipole
moment, and the wave packet is transferred vertically

Žfrom the ground state onto the potential surface called
.‘surface 2’. When spin–orbit coupling between the two

states is nonzero, amplitude is transferred from surface
2 to surface 1. The rate at which the wave packet
develops amplitude is related to intersystem crossing,
and the population is related to the intensity that is
borrowed.

The trends in the emission intensity distributions in
the vibronic structure induced by coupling between
excited-state potential surfaces can be interpreted from

the trends in the eigenfunction of the lowest energy
vibrational level of the coupled excited states, i.e., the
initial wave packet at ts0. The initial wave packet
consists of two parts, one from the part of the eigen-
function associated with surface 1 multiplied by the
transition dipole between surface 1 and the ground state,
and the second part from the part of the eigenfunction
associated with surface 2 multiplied by the transition
dipole between surface 2 and the ground state.

The spectra calculated by propagating the above
functions on a harmonic ground state potential are
shown in Fig. 12. For zero coupling, there is no emis-
sion spectrum because the transition is dipole-forbidden.
As the coupling increases, the intensities of the vibronic
side bands relative to that of the origin increase. A
simple physical picture for explaining the increasing
intensity of the side bands to that of the origin is that
the wave packet has increasing probability at a position
away from the minimum of the ground-state surface

² < Ž .:giving rise to more rapid decreases in f f t , hence
to a broader spectrum containing more vibronic features
Žin the time-independent picture, the initial eigenfunc-
tion appears to be more and more displaced leading to
better overlap with higher quanta vibrational wavefunc-

.tions of the ground electronic state .

Fig. 12. ‘Forbidden’ emission spectra from an undisplaced potential
Žsurface coupled to an allowed state. The coupling constants are top

. y1to bottom 500, 1000 and 3000 cm .
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The net results of increasing the excited state poten-
tial surface coupling are to allow the spin-forbidden
transition, and to induce a vibronic progression in the
emission from an undisplaced potential surface. The
magnitudes of these effects depend, not only on the
coupling, but also on the relative placements of the
potential surfaces. Although the trends can be under-
stood in terms of the physical pictures discussed above,
case-by-case quantitative calculations must be carried
out to understand the details in the spectra of specific
molecules.

Quantitative analysis of resolved vibronic structure in
Ž .the emission spectra of manganese V in oxide lattices

w xusing the theory described above has been reported 35 .
Short progressions are observed in totally symmetric
Mn–O modes although no distortions are expected.
These experimental results provide a rigorous test be-
cause the input parameters are precisely measured. The
calculated intensities of the vibronic bands in the spec-
tra are in excellent agreement with the measured values.

( )4.2. Interference dips Fano antiresonance

Another spectroscopic effect caused by coupling of
electronic states is an unexpected decrease in intensity
where the spectra of two states overlap. When elec-
tronic states are uncoupled, the spectrum consists of the
sum of the individual spectra from the states, but when
the states are coupled, the resulting spectrum may not

Žbe the simple sum but instead can contain dips loss of
.intensity . The origin of the dips is destructive interfer-

ence between the wave packet moving on one of the
surfaces with the wave packet moving on the coupled
surface. We have called this phenomenon ‘interference
dips’ and quantitatively treated them in the spectra of

w xmetal compounds 30 . They are related to ‘Fano an-
tiresonance’ in atomic spectroscopy.

The time-domain explanation of an interference dip
is found in the overlap. When the two surfaces are
coupled, the total overlap decreases more rapidly than
in the uncoupled case. In addition, the overlap then
increases to give a small recurrence and then slowly
decreases again. In contrast, the overlap for the uncou-
pled surfaces decreases smoothly to zero. The initial
decrease is less rapid than that calculated with coupling.
The more complicated behavior of the overlap with
coupling is explained by the population changes that
take place. The population of diabatic surface 2 rapidly
decreases, reaches a local minimum, and then increases
to reach a local maximum. The initial decrease corre-
sponds to loss of population to diabatic surface 1 fol-
lowed by net back transfer of some population. The
overlap roughly follows the population, although its
magnitude is not simply proportional to the population
because the properties of the wavefunction are changed
when the population changes. When compared to the

overlap for the uncoupled case, the decrease is more
rapid at a short time but a recurrence is also observed.
When transformed to the frequency domain, the more
rapid decrease results in a broader spectrum, i.e., in
more intensity at higher energies and less intensity at
lower energies in the spectrum relative to that in the
uncoupled case. The small recurrence results in a fea-
ture at cy1 ty1 in the frequency domain. The netrecurrence
result of these two effects is to produce a spectrum for
the coupled case in which a dip is observed in the
envelope. Interference effects, large or small, always
occur between two potential surfaces when the surfaces
are coupled.

4.3. Electron transfer

Our final set of examples that illustrate the impor-
tance of coupling between electronic states involves
electron transfer. Many different types of electron trans-
fer have been studied spectroscopically including metal-
to-metal, ligand-to-ligand, and intervalence electron

w xtransfer 1–4,40,41 . In all of the cases that are relevant
to our discussion, the initial and final electronic states
are coupled, a photon causes electron transfer, and the
system relaxes with back electron transfer. When the
initial and final surfaces have minima at different ener-
gies and internuclear separations, the theoretical treat-

Ž .ment requires wave packet hopping amplitude transfer
w xbetween the surfaces as discussed above 19 . In the

case of intervalence electron transfer, the surfaces have
minima at the same energies but at different internuclear

w xseparations 33,37 .
An intervalence absorption spectrum represents an

interesting and subtle type of electronic transition where
the initial and final states cannot be represented by
potential energy surfaces and the Born–Oppenheimer

w xapproximation 33,37,42 . The intervalence absorption
band is a low-energy transition in the red or near-IR
region of the absorption spectrum that is present in
molecules containing two interchangeably equivalent
sites with different oxidation states, but is absent in
molecules where the two sites have the same oxidation

w xstate 40,41 . A large number of examples are known
where the two sites are metal atoms connected by a
bridging ligand. We have examined three different pairs
of diabatic surfaces representing three different models

w xthat generate the same adiabatic potential surfaces 37 .
Each of these three models is based on a different
physical picture of the intervalence transition. The first
model represents charge transfer between two sites, the
second represents a transition between bonding and
antibonding molecular orbitals, and the third represents
a nonbonding to nonbonding transition. We derived the
specific forms of the couplings required to give the
adiabatic potential energy surfaces and the transition
dipole moments, and calculated the spectra for each
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model. The details of these models are outside of the
scope of this paper, but the physical picture provided by
wave packet dynamics and the role of excited state
distortions in determining the spectra are understandable
in terms of the principles discussed earlier in this paper.

5. Summary

The time-dependent theory provides a powerful
quantitative calculational method and intuitive physical
picture for interpreting the dynamics of a molecule after
absorption or emission of a photon. In this paper we
showed the connections between the motion of the wave
packet on a potential surface and the corresponding
luminescence spectrum. Other photophysical processes
are interpreted in terms of wave packet transfer between
coupled surfaces. The changes in bond lengths and bond
angles can be calculated, and a picture of the molecule
in the lowest excited state can be obtained.
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